Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 31(18): 27037-27051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502266

RESUMO

Graphene-based material is widely used to remove arsenic from water due to its layered structure with high surface area. Here, we have successfully synthesized Fe-La bimetallic modified graphite sheet materials to more efficiently remove As(III) from aqueous solution. The results showed that Fe-La-graphite sheets (FL-graphite sheets) have a larger specific surface area (194.28 m2·g-1) than graphite sheets (2.80 m2·g-1). The adsorption capacity of FL-graphite sheets for As(III) was 51.69 mg·g-1, which was higher than that of graphite sheets (21.91 mg·g-1), La-graphite sheets (26.06 mg·g-1), and Fe-graphite sheets (40.26 mg·g-1). The FL-graphite sheets conformed to the Freundlich and Dubinin-Radushkevich isotherm, and the maximum adsorption capacity was 53.62 mg·g-1. The removal process obeys intra-particle diffusion and pore diffusion for As(III). The results of batch adsorption experiments and characterization analyses demonstrated that oxidation, ligand exchange, and inner sphere complexation mechanisms involved in the adsorption of FL-graphite sheets to As(III) in comparison with graphite sheets. In addition, electrostatic attraction mechanism was found vital in the adsorption. Ecotoxicity assessment revealed that FL-graphite sheets have little influence on rice germination and growth, but reduced the toxicity of As(III) to rice. Therefore, the FL-graphite sheets have good practical application value in purifying As(III) polluted water with litter ecotoxicity.


Assuntos
Arsênio , Grafite , Ferro , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ferro/química , Adsorção , Purificação da Água/métodos
3.
Environ Int ; 185: 108550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452466

RESUMO

Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and ß-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.


Assuntos
Melatonina , Metais Pesados , Oryza , Poluentes do Solo , Humanos , Ferro/química , Solo/química , Cádmio/análise , Melatonina/farmacologia , Oryza/química , Metais Pesados/análise , Bactérias , Poluentes do Solo/análise
4.
Antioxidants (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38001770

RESUMO

Antimony (Sb) is a hazardous metal element that is potentially toxic and carcinogenic. Melatonin (MT) is an indole compound with antioxidant properties that plays an essential role in plant growth and alleviates heavy metal stresses. Nevertheless, little is known about the effects and mechanisms of exogenous MT action on rice under Sb stress. The aim of this experiment was to explore the mechanism of MT reducing Sb toxicity in rice via hydroponics. The results showed that Sb stress significantly inhibited the growth of rice, including biomass, root parameters, and root viability. Exogenous MT obviously alleviated the inhibition of Sb stress on seedling growth and increased biomass, root parameters, and root viability by 15-55%. MT significantly reduced the total Sb content in rice and the subcellular Sb contents in roots by nearly 20-40% and 12.3-54.2% under Sb stress, respectively. MT significantly decreased the contents of malondialdehyde (MDA, by nearly 50%), ROS (H2O2 and O2·-, by nearly 20-30%), and RNS (NO and ONOO-) in roots under Sb stress, thus reducing oxidative stress and cell membrane damage. Furthermore, MT reversed Sb-induced phytotoxicity by increasing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) by nearly 15% to 50% and by regulating the AsA-GSH cycle. In conclusion, this study demonstrates the potential of MT to maintain redox homeostasis and reduce Sb toxicity in rice cells, decreasing the content of Sb in rice and thereby alleviating the inhibition of Sb on rice growth. The results provided a feasible strategy for mitigating Sb toxicity in rice.

5.
Environ Sci Pollut Res Int ; 30(3): 6454-6465, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997876

RESUMO

Plant hormones play essential roles in plant growth regulation and resistance to environmental pressure. A hydroponic experiment was conducted using Zhongjiazao 17 rice to explore the effects of exogenous plant hormones on antioxidant response and As accumulation in rice under As stress. Melatonin (MT), 2,4-epibrassinolide (EBL), and jasmonic acid (JA) reduced the As content in seedlings significantly by 13.4% (MT)-32.5% (EBL) under 5 µM As stress. Three hormones increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and glutathione (GSH) content significantly (2.2%-82.9%) in 5 µM As stress condition, whereas the levels of H2O2 and malondialdehyde (MDA) were reduced significantly (32.3%-78.1%). Plant hormone addition reduced the As content in seedlings significantly by 18.2% (JA)-33.3% (MT) under 25 µM As stress. SOD, POD, and CAT activities and GSH content in seedlings increased significantly (5.6-90.4%) with three hormones addition in 25 µM As stress, whereas the levels of H2O2, O2˙¯, and MDA reduced significantly (20.9-73.0%). Staining with 2',7'-dichlorodihydrofluorescein diacetate and nitroblue tetrazolium showed that green fluorescence and blue spots decreased gradually in hormone-treated seedlings, further confirming that the exogenous addition of hormones weakened the oxidative stress of As to seedlings. Oxidative damage by As stress was reduced more by EBL than by the other hormones MT or JA. Totally, exogenous plant hormone can alleviate As stress in rice by activating enzyme activity of antioxidant defense system and scavenging reactive oxygen species, thus reducing oxidative damage and As accumulation in rice seedlings.


Assuntos
Melatonina , Oryza , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Oxirredutases , Melatonina/farmacologia , Peroxidases , Plântula
6.
Huan Jing Ke Xue ; 43(8): 4292-4300, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971725

RESUMO

In order to improve the phytoextraction efficiency of Xanthium sibiricum on farmland soil that had been contaminated by Cd and As, this study explored the effects of chelating agents and organic acids (EDTA, SAP, CA, and MA) on the extraction of Cd and As heavy metals using X. sibiricum. The results showed that the four different chelating agents and organic acids had little effect on the biomass of the roots, stems, and leaves of X. sibiricum. However, they had different effects on the concentrations and accumulation of Cd and As in various organs of X. sibiricum. Compared with the those in the CK treatment, EDTA, SAP, CA, and MA significantly increased the Cd concentrations in the leaves of X. sibiricum by 44.1%, 32.4%, 41.2%, and 38.2% and the As concentrations in the roots of X. sibiricum by 89.6%, 7.4%, 94.8%, and 61.5%, respectively. The four treatments (EDTA, SAP, CA, and MA) improved the total Cd accumulation of X. sibiricum, with increasing ranges, respectively, of 70.2%, 29.4%, 28.9%, and 33.1%, and the As accumulation increased by 67.0%, 19.6%, 81.9%, and 40.8%, respectively, compared with that of the CK treatment. The four chelating agents and organic acids had different effects on the Cd and As bioconcentration factor and transfer factor of various organs of X. sibiricum. Treatments with EDTA, SAP, CA, and MA resulted in a decrease of 32.7%-38.2% in soil Cd concentrations and a decrease of 14.6%-20.5% in soil As concentrations. These four chelating agents can be used for enhancing the efficiency of extraction Cd and As heavy metals by X. sibiricum.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Xanthium , Biodegradação Ambiental , Cádmio/análise , Quelantes/farmacologia , Ácido Edético/farmacologia , Metais Pesados/análise , Solo , Poluentes do Solo/análise
7.
Environ Pollut ; 304: 119178, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367286

RESUMO

Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H2O2 content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.


Assuntos
Oryza , Poluentes do Solo , Antioxidantes/metabolismo , Cádmio/análise , Cádmio/química , Ciclopentanos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Oxilipinas/química , Oxilipinas/toxicidade , Raízes de Plantas/metabolismo , Plântula , Poluentes do Solo/análise
8.
Environ Sci Pollut Res Int ; 29(2): 2853-2865, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34379263

RESUMO

Water management has opposite effects on the bioavailability of Cd and As in soil. In order to identify the most efficient water management strategy for reducing Cd and As accumulations and amino acid (AA) synthesis in rice in two soils with different Cd and As contents, a pot experiments were conducted in greenhouse. A treatment consisting of 5 days of flooding followed by 3 days of drainage (F5D3, repeated every 8 days) was identified as the most effective treatment for simultaneously decreasing Cd and As in grains, with reductions of grain Cd and As contents of more than 80.0% and 73.1%, respectively, compared with either a drained treatment or a flooded treatment alone; this is probably related to the high efficiency of the F5D3 treatment in reducing dissolved Cd and As according to its minimum "trade-off value" (an index for evaluating the degree of trade-off between soil solution As and Cd concentrations in water management condition), due to the variations in grain Cd and As contents which were significantly correlated with the variations in soil solution Cd (R2=0.98) and As (R2=0.92, P=0.0001) concentrations. Additionally, grain Cd content was also significantly related to the organs Cd contents (especially root Cd content, R2=0.99) and the root-to-shoot Cd translocation factors (R2=0.99), whereas grain As content was significantly related to soil Eh (R2=-0.82, P=0.003) and pH (R2=0.88, P=0.0008). The AA contents in organs under the F5D3 treatment were lower than those under the flooded and drained treatments. These results indicated that the F5D3 treatment was the most effective water management strategy for simultaneously reducing grain Cd and As contents and AA synthesis in rice, which was probably due to there being no need for rice to synthesize abundant AAs to chelate metal ions.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Solo , Poluentes do Solo/análise , Água , Abastecimento de Água
9.
J Environ Biol ; 32(2): 235-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21882661

RESUMO

A nutrient solution experiment was conducted to investigate the effect of Fe and Zn supply on Fe, Zn, Cu, and Mn concentrations in wheat plants. The experiment used a factorial combination of two Fe levels (0 and 5 mg l(-1)) and three Zn levels (0, 0.1 and 10 mg I(-1)). The supply of Fe (5 mg l(-1)) and Zn (0.1 mg l(-1)) increased plant dry weight and leaf chlorophyll content compared to the Fe or Zn deficient (0 mg 11) treatments. However, excess Zn supply (10 mg l(-1)) reduced plant dry weights and leaf chlorophyll content. Iron supply (5 mg l(-1)) reduced wheat Zn concentrations by 49%, Cu concentrations by 34%, and Mn by 56% respectively. Zinc supply (10 mg l(-1)) reduced wheat Fe concentrations by an average of 8%, but had no significant effect on Cu and Mn concentrations. Stepwise regression analyses indicated that Zn, Cu, and Mn concentrations were negatively correlated with root- and leaf-Fe concentrations, but positively correlated with stem-Fe concentrations. Leaf-Mn concentrations were negatively correlated with root-, stem- and leaf-Zn concentrations.


Assuntos
Ferro/administração & dosagem , Triticum/metabolismo , Zinco/administração & dosagem , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA